1650

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 10, OCTOBER 1996

Finite Element Analysis of MMIC Waveguide
Structures with Anisotropic Substrates

Anastasis C. Polycarpou, Student Member, IEEE, Michael R. Lyons, Student Member, IEEE,
and Constantine A. Balanis, Fellow, IEEE

Abstraci— This paper presents an extended finite element
formulation for a full-wave analysis of biaxial and transverse
plane electric and magnetic anisotropic materials with applica-
tion to monolithic microwave integrated circuits (MMIC’s). A
convenient formulation of the characteristic impedance based
on a power-voltage definition is developed using vector-based
finite elements. The resultant generalized eigenvalue problem is
solved using a numerically efficient algorithm based on a forward
iteration, taking full advantage of the sparsity of the involved
matrices. Numerical results are compared and agree well with
existing published data for various MMIC configurations. Two
specific coplanar waveguide structures, one with a conventional
and the other with a suspended substrate, are examined using
four common anisotropic materials. Principal axis rotations of the
anisotropic substrates are also considered to improve dominant
mode dispersion characteristics and minimize higher order mode
interactions.

1. INTRODUCTION

CCURATE prediction of the propagation characteristics

in planar structures using anisotropic substrate materials
is essential in the design of monolithic microwave integrated
circuits (MMIC’s) [1]-[5]. Since many substrate materials of
interest in microwave and millimeter wave applications exhibit
dielectric and/or magnetic anisotropies (such as sapphires,
ceramics, and ferrites), the effects due to variations in the
material parameters must be fully accounted for. Principal
axis rotations of an anisotropic substrate in MMIC’s can also
lead to significant variations in the effective dielectric constant
and characteristic impedance, especially at microwave and
millimeter wave frequencies. The dispersive characteristics of
coplanar waveguides (CPW’s) and other planar structures on
single and multilayer isotropic substrates have been exten-
sively analyzed in the literature [6]-[10]. To an extent, the
effects due to anisotropy have also been examined; however
primarily only for uniaxial and/or biaxial substrates [1], [3],
and [5]. Axis rotations in various planes, which introduces
off-diagonal elements in the permittivity and/or permeability
tensors. were also investigated [2] and [4].

Although quasistatic methods have been employed to ana-
lyze the dominant mode characteristics of CPW’s and other
planar structures on isotropic and anisotropic substrates, such
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techniques yield accurate results only at very low frequencies
[11]. More accurate frequency dependent solutions have been
obtained using full-wave analyzes such as the spectral domain
approach [2], [3], [10], and the finite element method [12].
While the spectral domain approach is a popular choice for
analyzing regular planar structures, the finite element method
is more versatile, since it is possible to model arbitrary
geometric and material complexities. When using the finite
element method, the domain of interest is discretized using
simple geometric shapes, such as triangles, where the fields
are approximated using linear or higher order basis functions.
Because of this, it is also relatively straightforward to compute
quantities of interest in MMIC transmission lines, such as total
power, voltage difference, and characteristic impedance. A
major drawback of the finite element method is the appearance
of nonphysical or spurious modes. However, these nonphysical
solutions to Maxwell’s equations, which appear when using
nodal-based finite elements, can be avoided using vector-
based finite elements [12]. In addition to imposing tangential
continuity of the electric and magnetic fields across element
boundaries, the vector finite elements, when implementing the
appropriate basis functions, also satisfy the divergence-free
condition. Using this type of element, the resulting numerical
solutions correspond to the correct physical modes of the
structure. Allocation of computer resources is also a major
concern when using the finite element method since such a
technique requires storage and manipulation of large sparse
systems. In this case, sparse linear solvers are usually more
suitable than direct solvers [13].

Until now, most finite element method formulations have
been used to analyze the propagation characteristics of
isotropic and biaxially anisotropic waveguides [12]-{14] with
explicit application to only isotropic microstrip structures
[12]. In this paper, an extended vector-based finite element
formulation for biaxial and transverse plane anisotropic
materials is presented and used to characterize shielded
CPW’s with four common anisotropic substrates: sapphire,
boron nitride, epsilam-10, and PTFE cloth. A numerically
efficient algorithm for finding the largest eigenvalue and
eigenvector is presented based on a forward iteration approach.
Higher eigenpairs can be found using a Gram-—Schmidt
orthogonalization process [15]. In addition, an explicit
formulation for calculating characteristic impedance applicable
to slot-like MMIC structures is given for linear triangular
finite elements. Numerical results are compared with existing
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published data to verify the finite element code. Two specific
structures, conventional (C-CPW) and suspended (S-CPW)
CPW’s, are also analyzed. The dominant and first four higher
order modes are examined as a function of substrate material
anisotropy and principal axis rotation. Contour plots for the
longitudinal fields of the dominant and first higher order modes
are also presented for both CPW structures. Visualization of
field concentration provides additional physical insight and
understanding of the behavior of each propagating mode.

II. THEORY

A. Eigen Problem Formulation

A full-wave analysis of shielded waveguide structures,
which incorporates both electric and magnetic anisotropic
materials, is described by

V x (It VXE)— k% E =0. )

The permittivity and permeability tensors are assumed to be
of the following form:

_ €z €xy U
€& = |€yr €yy O
L 0 0 €,
_ [Hee say O
ﬁr = [Hyx  Hyy 0
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[uin May 0
Bl = | gy 0
L0 0 pl

The inverse of the permeability tensor is calculated using
symbolic manipulations of a 3 x 3 square matrix. It is also
assumed that there are no current sources in the domain of
interest and that the corresponding boundary conditions are
given by

7 X E=0 on an electric wall )

X (VxE)=0 on amagnetic wall, 3

The representative variational functional for such a problem
can be expressed as

FE)=3 //Q (V x E)a, "(V x E)* — k2E€. E*] dQ. (4)

Assuming that the dependence of the fields in the z-direction is
e k-2 the functional can be written in terms of the transverse
and the longitudinal fields similar to [12]; i.e.,

// Vt X Et ,LLT(vt X Et)

— ko (Et €T'Et + Ez ETE:)
+ (ViEe + jk.Ee) 10, (Vi B + jk.Ey)*] dQ (5)

F(E) =

where V; is the transverse del operator, E; is the transverse
component of the electric field, and E, is the longitudinal
component of the electric field. The tensor .. referred to as
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the relative pseudo-permeability, has also been introduced and
is defined as

[ e o «
= | w0 | ©
00

If an isotropic permeability is assumed, the functional is
reduced to the one given in [12]. Referring to Fig. 1, these field
components can be subsequently expanded as a summation of
scalar and vector basis functions

€4 :szt
= Z Nyes, 7
er = —JE~

=ZM; ®)

where n represents the number of degrees of freedom in each
element. The functional given in (5) can be discretized, using .
a procedure similar to [12] to obtain the following elemental
matrices:

Azl = | ({9 N (1 xN3)
R NCYTE (N}

=[Sl — k[T, 9)
Bads = [[ N0YTR, (N5} a0

=[T}],;, where er:>ur (10)
[Bi.l, = / {Ne}TNT{VtNG}dQ (11)
B2, / (VNE YT (NS} d) 12)
Bl = [ {9y TRAT NG}

— K2{N{}TE{NF} dO

=[52.1, — K2TE ), (13)

where ¢ and j denote the row and column, respectively, of
the corresponding entry; the size of the elemental matrices is
n x n. Closed form expressions for the above matrices are
given explicitly, for the case of linear triangular elements, in
the Appendix. Although the derivation of these equations is
rather tedious and involved, their computer implementation
is straightforward. Following the assembly of all elements in
the finite element region, a generalized eigenvalue system is

formed
Ay 0 fee = 2 By Bir | fe
0 0 €, K th Bzz €z .
This can be solved using either a standard direct solver or an
iterative solver. The former usually results in the computation
of all the eigenvalues and eigenvectors of the matrix system.

However, in practice, only the first few dominant modes
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Fig. 1. Triangular vector element.

Fig. 2. Definition of principal axis rotation for an anisotropic substrate.

¢

are desired; therefore, an iterative solver is usually more
appropriate.

To account for principal axis rotation of anisotropic sub-
strates, the permittivity tensor, €,, needs to be modified ac-
cording to Fig. 2. Assuming that

€1 0 0
E; =10 €2 0
0 0 €3

for a biaxial substrate, the resulting permittivity tensor, €,, for
any angle of rotation # is given by

€re €xy O

for the present analysis. The corresponding expression is given
by [5]

Zczy—‘i P:ZH (19)

where V is the voltage difference in the slot, P; is the power
calculated in each element, P is the total power flowing in
the z-direction, and NV is the number of finite elements in the
domain of interest. The elemental power P; is given by the
Poynting vector

Pi:%Re{// EixH;‘-azds}
A
=1Re [ / /A (E.H; — E,HY) ds} (20)

where the magnetic field components H,, and H,, are calcu-
lated directly from Maxwell’s equations; note that the expres-
sions for the electric field components are known in closed
form. The above integration is performed over the area of
each finite element. ~

Based on a linear triangular element formulation, where
the edges represent transverse fields and the nodes represent
longitudinal fields, the final expressions for the transverse com-
ponents of both the electric and magnetic fields are explicitly
given by '

E.(z,y) =C1 — Cay (21)
Ey(z,y) =Csz— Oy (22)
Hy(z,y) = D1y + Doz + D (23)
Hy(z, y) = Day + D5z + D (24)

where C'1—; and Dq—¢ are constants defined as
1 3
— .06,
Cl .— 2A ; lzyzetz

3
1
Ca > e (25)
=1

3
1 e

€& = |€ys €yy O
0 0 e,
where
€xg = €1 COS> (0) + €5 sin® (9) (15)
Eyy = €1 sin? (8) + €3 cos® (4) (16)
€,2 = €3 a7
€xy = €y
= (€9 — €1) sin (6) cos (6). (18)

In this paper, the crystal lattice is rotated only from 0-90°.

B. Characteristic Impedance Formulation

After solving the eigenvalue problem given in (14) at each
frequency point, the propagation constant in the z-direction
and the corresponding normalized transverse and longitudinal
fields inside the structure can be obtained. Both the propa-
gation constant and the fields are needed for the calculation
of the characteristic impedance. Although the definition of
the characteristic impedance is not unique for inhomogeneous
waveguide structures, the voltage-power definition was chosen

Cy
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where z, and y, (¢ = 1, 2, 3) denote the coordinates of each
triangular element, [, (z = 1, 2, 3) denote the lengths of the
individual edges, and A denotes the area of the triangular
element which is given by

(30)

A= %{xlbl +.I2()2—|—.’E3b3}. 3D

Also, the b,’s and c,’s are defined as

by =y2—ys3
by =yz — 1
bs =y1 — y2

€1 =23 — X2
Coa =21 — I3

C3 =T — T1.

The integration in (20), over the area of the triangular ele-
ment, can be evaluated very conveniently using the simplex
coordinates.

In addition to calculating the total power flowing through
the waveguide structure at each frequency point, the voltage
difference in the slot, defined by

V:—/E~dl
L

needs to be determined. Assuming that the slot lies horizon-
tally, the above integral can be simplified to

V:—/rme
x;

where z; and z, are the left and right z-coordinates of the
slot. Since the slot is discretized into finite linear triangular
elements, the line integral has to be evaluated for each element
in the slot. The total voltage difference is given by

N,
V:E:W
=1

where N, is the number of elements in the slot and V, is the
individual voltage difference. Using linear triangular elements,

(32)

(33)

(34)
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this can be expressed as

1
Vi=oq (z7 = 27)[(y1 — h)lien

+ (y2 — h)lsen + (y3 — h)lzes) (35)

where z; and zj are the limits of the voltage line integral
evaluated for each element in the slot, and £ is the height of
the slot.

C. A Generalized Eigenvalue Solver

The solution of a generalized eigenvalue problem defined as

[K]{z} = A\[M]{z} (36)

can be computationally intensive and time demanding, es-
pecially as the number of unknowns increases. There are
various methods of solving for both the eigenvalues and
the corresponding eigenvectors. The simplest method is to
store both matrices in a full format and then use a direct
solver, like those available in EISPACK [16]. Such a solver
usually computes all the eigenvalues and eigenvectors of the
matrix system. This approach, however, is very inefficient both
in terms of computational time and memory requirements.
One of the most suitable methods for solving a general-
ized eigenvalue problem is the power iteration, otherwise
known as forward and inverse power iteration. Note that
the forward power iteration is used to estimate the largest
eigenvalues of the matrix system, whereas the inverse power
iteration is used to estimate the lowest eigenvalues. The major
advantages of using a power iteration are: first, speed-up
in computational time; second, complete utilization of the
sparsity of the matrices; third, computation of only a selected
number of eigenvalue/eigenvector pairs. As far as the latter
is concerned, it is important to realize that in analyzing
waveguide structures, only the most dominant modes are
significant; therefore, it is not necessary that all higher order
eigenvalues and eigenvectors be calculated. In addition, the
accuracy of the higher order eigenvalues and eigenvectors
deteriorates accordingly, which is another reason for not
calculating more than a few eigenmodes.

The results presented in this paper were obtained using a
forward power iteration method. The algorithm is quite simple
but very powerful. The major steps involved in the algorithm
are the following:

Step 1:

o Initialize a starting vector u(®) (other than the zero

vector).

« Set the iteration index k = 0.

Step 2:

 Increment the iteration index; k = k + 1.

Step 3:

o Determine a vector vi¢—1) = Ku(~1),

For efficiency, the multiplication of a matrix with a vector
can be carried out using a sparse format.

Step 4:

» Solve the linear system M u®) = v(=1),
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Fig. 3. Dispersion curves for the dominant mode of a coupled microstrip lines on a boron nitride substrate (€zx = 5.12, €y, = 3.4, and €., = 5.12);
hy = 1.5 mm, w = w; = 0.75 mm, and 2b = 8.5 mm.

An efficient way to solve the above linear system is to use
a sparse LU solver, such as SPARSE 1.3a [17]. The advantage
of using such a solver is that the factorization of the M
matrix needs to be performed only once; therefore, subsequent
iterations require only backward substitution which results in
significant speed-up of the algorithm. Other solvers, such as
the ones that use iterative techniques, are also appropriate since
the sparsity of the matrix can be utilized efficiently.

Step 5:

» Assign v¥) = Kul®.

Step 6:

¢ Estimate the largest eigenvalue using

AR — u*(k)v(k)/(u*(k)v(kﬁl)),

The symbol “*” denotes conjugate transpose.

Step 7:

* Normalize the corresponding eigenvector as follows:

u® = u(k7/,/u*(k)v(k~1)_

Step 8:

 Calculate the 2-norm of the residual:

RIS = 1K u® = ALz,
o If ||R{|ék) < tolerance = Exit the algorithm; otherwise,
go to Step 1.

As it was already mentioned, the above algorithm converges
to the largest eigenvalue, provided that the starting vector
does not coincide with one of the eigenvectors. In order to
be able to find higher order eigenvalues, the starting vector
has to be chosen from a space M orthogonal to the already
calculated eigenvectors. Such an orthogonalization is well-
known as the Gram—Schmidt process [15]. In other words,
if Uy, Uy, .-+, U, are considered the first m eigenvectors
already calculated using the power iteration, the starting vector
for each iteration, according to the Gram-Schmidt orthogonal-

ization, is given by

uft =kt - [u*(kfl)MU1]*U1 - [U*(kgl)MUﬂ*UZ
¢ D MU, U, (37

Using this as a starting vector in each iteration will result in
the calculation of A, y; and U,,;1. Note that the accuracy
of the algorithm can be improved by setting the convergence
tolerance to a lower value. It is also important to mention
here that the forward power iteration converges much faster
than the inverse power iteration [12], at least for the type of
problems considered in this paper, which is another significant
reason for implementing this particular algorithm.

III. RESULTS

A complete FEM code based on the analytical formulation
presented in the previous section was written and tested for
a variety of geometries and materials. The FEM code was
interfaced with SDRC I-DEAS [18], a software package from
Structural Dynamics Research Corporation with preprocess-
ing requirements such as meshing, material definition, and
boundary conditions. It was also interfaced with other well-
known packages such as PLOTMTYV and GEOMVIEW which
can be used for data visualization and important geometry
checks.

The first geometry considered in validating the finite el-
ement formulation and corresponding code was the coupled
microstrip lines initially examined by Mostafa et al. [4] using
a spectral domain approach. The coupled microstrip lines rest
on a uniaxial boron nitride substrate (e,, = €,, = 5.12,
€yy = 3.4). The effective dielectric constant, €,.r, versus
a principal axis crystal rotation angle, 8, as defined in [4], is
depicted in Fig. 3 for two different frequencies: f = 10 GHz
and f = 20 GHz. A comparison between our results and data
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Fig. 4. Characteristic impedance versus frequency for a unilateral finline; ¢ = 2b = 4.7752 mm, s = 0.127 mm, h = 2.3876 mm, d = 0.47752
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Fig. 5. Dispersion curves for the dominant mode of a suspended coplanar waveguide; a =

Cg/a = 0.5, and d1 = d2 = d3 = d4 = d5 = b/5.

obtained from [4] shows a very good agreement between the
two methods.

A second geometry considered was a unilateral finline
already examined by Mansour et al. [5]. The frequency de-
pendence of the effective dielectric constant €,.5y and the
characteristic impedance Z. is illustrated in Fig. 4. Data
obtained from the corresponding figure in [5] are also shown
on the same graph. The agreement between the two sets of data
is very good. It is important to mention here that the accuracy
of the characteristic impedance depends on the mesh density in
the finite element region, especially near the slot. The reason
is due to the fact that the formulation of the characteristic

7.112 mm, b = 3.556 mm, ¢i/a = 0.4, c2/a = 0.1,

impedance involves the actual field distribution in the entire
structure. Specifically, fields in the vicinity of the slot, which
are known to exhibit rapid spatial variations, require either a
finer mesh or higher order elements for good representation.
In obtaining the results shown in Fig. 4, 13 linear triangular
elements were used across the slot and a total of 1036 elements
in the entire structure.

A suspended coplanar waveguide with magnetic anisotropic
unjaxial substrates was also analyzed using the finite ele-
ment code. This geometry was initially examined by Mazé-
Merceur et al., [3] using the spectral domain approach. Defin-
ing the quantity €pefs - pirefs = (kz/ko)? [3], the effects
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(b)

Fig. 6. Conventional and suspended waveguide geometries: (a) ¢; = 3.2
mm, ¢ = 2.71 mm, dy =ds = 1.5 mm, do = d3 = dy = 0.5 mm and
(b) ¢ = 2.7 mm, co = 0.5 mm, ¢cg = 2.71 mm, d; = ds = 1.5 mm, and
dy = dg = dg = 0.5 mm.

due to both electric and magnetic anisotropy are accounted
for. A comparison of the e€crr - pirers versus frequency
between the two methods is illustrated in Fig. 5 for a variety
of isotropic and uniaxially magnetic anisotropic substrates.
A good agreement is observed between the two sets of
data.

After verifying the finite element formulation and cor-
responding code, the effective dielectric constant and the
characteristic impedance versus frequency of a conventional
coplanar waveguide were investigated. The geometry is de-
picted in Fig. 6(a) using four commonly used uniaxial/biaxial
anisotropic substrates: sapphire (e, = €,; = 9.4, ey, = 11.6),
epsilam-10 (ez, = €., = 13.0, €, = 10.3), boron nitride
(€ze = €:2 = 5.12, €y = 3.4), and PTEE cloth (¢;, = 2.89,
€yy = 2.45, ¢,, = 2.95). The relative permeability of all
these crystals is assumed unity. The corresponding graphs are
illustrated in Fig. 7.

Starting with sapphire in Fig. 7, it is interesting to observe
that the dominant mode is very dispersive. The corresponding
€refp varies by as much as 100% within the 100 GHz range
shown in the figure. The dispersive behavior of the dominant
mode occurs within the range of 10-30 GHz, which limits the
single mode operational bandwidth. Within the same frequency
range, the corresponding characteristic impedance of the dom-
inant mode exhibits a rapid decrease toward zero. In addition,
the dominant mode shows very little coupling with the first
four HOMs; however, there is a strong coupling between the
first and second HOM’s. As a result of such a strong interaction
between these two modes, the characteristic impedance of the
first HOM is only shown up to a frequency of about 15 GHz,
where significant coupling is observed. Coupling between any
two modes is present when the corresponding phase velocities
or propagation constants are nearly the same. The closer these
quantities are, the stronger the coupling between the two
modes.
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Without discussing the remaining three sets of graphs in
Fig. 7 in detail, it is interesting to note that besides the
HOM coupling effects, there is an additional strong interaction
between the dominant mode and the HOM’s. By examining
the field distribution of the dominant mode in the coplanar
waveguide at various frequencies, it was realized that this
mode actually crosses with a number of HOM’s. Although
such a process is cumbersome and time consuming, it is the
only way of tracking down the individual modes within a given
frequency range. This type of dispersion effect, in addition to
the dominant mode dispersion characteristics, further limits
the single mode operation of the structure. A comparison
of the percent change in the effective dielectric constant
of the dominant mode within a range of 100 GHz for all
four substrates is summarized in Table I. The sapphire sub-
strate appears to exhibit the highest percent change in €.y,
whereas the PTFE cloth exhibits the lowest. The characteristic
impedance of the dominant mode remains relatively constant
for all four cases up to a frequency where the dispersion effect
becomes quite significant. At that frequency, the characteristic
impedance of the dominant mode begins to decay toward zero.
On the other hand, the first HOM corresponds to a slot-line
like mode [10] and, therefore, the characteristic impedance
asymptotically approaches infinity at frequencies near the
cutoff frequency.

The dispersion curves concerning the conventional coplanar
waveguide were characterized by a strong interaction between
the dominant mode and HOM’s, which clearly restrains the
single mode operation in MMIC’s. Furthermore, the relatively
high percent change in the effective dielectric constant within
the 100 GHz frequency range introduces additional unwanted
dispersion. These problems can be overcome by introducing
a single layer suspended coplanar waveguide as shown in
Fig. 6(b). The effective dielectric constant of the first five
most dominant modes and the characteristic impedance of
the first two most dominant modes were computed and are
shown in Fig. 8. Without discussing each graph individually,
it is clear that there is a significant improvement in the
effective dielectric constant and characteristic impedance of
the current geometry compared to those corresponding to
the conventional coplanar waveguide. First, the dispersive
nature of the dominant mode for all four types of substrate
is significantly reduced. The corresponding percent change
in €..ry is tabulated in Table I. The dominant mode when
using sapphire, epsilam-10, and boron nitride still exhibits
some interaction with HOM’s, but clearly this mode interaction
occurs at frequencies much higher than those corresponding
to the conventional coplanar waveguide. On the contrary,
the dominant mode when using PTFE cloth, in addition to
having the less dispersive characteristics, shows no interac-
tion with any HOM, at least in a frequency range of 100
GHz. Furthermore, the cutoff frequencies for both the first
and second HOM’s have shifted to a higher frequency. In
particular, the cutoff frequency of the second HOM, in all
four cases examined, shifts to a frequency of about 30 GHz,
which is important for wideband operation in MMIC designs.
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Fig. 7. Effective dielectric constant and characteristic impedance curves of a conventional CPW using anisotropic substrates.

By introducing resi

stive films in the structure [19]. the first

TABLE 1

PERCENTAGE CHANGE IN THE EFFECTIVE DIELECTRIC

CONSTANT WITHIN A RanGE 100 GHz

HOM can be considerably attenuated, thereby increasing the
single mode bandwidth to approximately 30 GHz which is a
significant improvement to that of the conventional coplanar

waveguide.

Structure Sapphire Epsilam-10 | Boron Nitride | PTFE Cloth
C-CPW +100% +75% +85% +60%
S-CPW +83% +67% +26% +9%
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Fig. 8. Effective dielectric constant and characteristic impedance curves of a suspended CPW using anisotropic substrates.

The dispersion characteristics of the suspended coplanar dominant and the first HOM at a frequency of 50 GHz,
waveguide can be further altered by rotating the crystal lattice the rotation angle @ is varied from 0 to 90°. Based on our
in the transverse plane while observing the variation of the experience, effects on the propagation characteristics, such
€refs and Z. at a certain frequency. Considering only the as €..¢y and Z., are most noticeable only at relatively high
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Fig. 9. The effect of crystal rotation on the effective dielectric constant and characteristic impedance of a suspended CPW at a frequency of 50 GHz.

TABLE 1I

PERCENTAGE CHANGE IN THE EFFECTIVE DIELECTRIC CONSTANT BY ROTATING
THE CRYSTAL LATTICE 90° AT A FREQUENCY OF 50 GHz (S-CPW)

Mode Sapphire Epsilam-10 | Boron Nitride | PTFE cloth
Dominant +4.4% —32% —7.0% —2.3%
Fust HOM +11.7% —9.2% —16.0% —5.4%

frequencies. The corresponding results due to crystal rotation
for all four substrates are shown in Fig. 9. When using
sapphire. the effective dielectric constant of the dominant
mode increases with angle of rotation § which, according to
Fig. 7, will result in a more dispersive structure. The increase
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Fig. 10. Longitudinal fields for the dominant mode and first HOM of a conventional CPW at a frequency of 15 GHz (all dimensions are in millimeters).

in €57 as 0 varies from 0 to 90° is primarily due to the
fact that ¢,y > €z, for this material. In addition to the more
dispersive dominant mode, the gap between the two modes
becomes narrower which clearly results in a much stronger
coupling between them. On the other hand, also illustrated
in Fig. 9, the overall effect of rotation on the characteristic
impedance of the two modes is relatively small. Thus, crystal
rotation effects for the case of sapphire will not improve the
propagation characteristics of the structure, at least as far as
coupling and dispersion is concerned.

For the remaining three types of crystals, i.e., epsilam-
10, boron nitride, and PTFE cloth, the effect of rotating
the crystal lattice is quite opposite to that of sapphire. By
rotating the crystal, the effective dielectric constant of the
dominant mode decreases considerably, thereby improving
the dispersion characteristics of the structure. This decrease
in €55 as 0 increases is due to the fact that €yy < €zz
for these materials. In addition, a considerable decrease in
the coupling between the two most dominant modes is also
observed as the angle of rotation varies from 0° to 90°. The
total percent change in the €,.¢5 of the dominant mode at 50
GHz, as the crystal lattice is rotated by 90°, is summarized
in Table II.

A more complete understanding of the existing modes
in a particular structure is usually obtained through data
visualization of the field components. At a frequency of 15
GHz, typical contour plots of the longitudinal fields for the
dominant and first higher order modes were generated for
each CPW structure using a boron nitride substrate. The
dominant and first higher order modes of the conventional
CPW are depicted in Fig. 10, while those of the suspended

CPW are shown in Fig. 11. For both modes, the contour
plots demonstrate that most of the longitudinal fields are
concentrated within the substrate material of each CPW con-
figuration. The symmetric nature of both CPW structures
along the vertical direction is also illustrated in these fig-
ures. A distinctive characteristic of the dominant mode is
that of a perfect magnetic wall (PMC) across the line of
symmetry; in contrast, the first higher order mode is char-
acterized by a perfect electric wall (PEC). As illustrated in
Fig. 10, for the conventional CPW, the longitudinal fields are
spread throughout the entire substrate, whereas in Fig. 11,
for the suspended CPW, the fields are compressed toward
the substrate interface, thus, resulting in a less dispersive
structure.

IV. CONCLUSION

A suitable vector-nodal finite element formulation, which
incorporates both electric and magnetic biaxial and transverse
plane anisotropies, was presented and applied to several com-
mon MMIC structures. In addition, a convenient characteristic
impedance formulation using linear triangular finite elements
and a power-voltage definition was presented. The resulting
generalized eigenvalue problem was solved efficiently using a
forward iteration algorithm while taking full advantage of the
sparsity of the matrices.

Numerical results of the effective dielectric constant and
characteristic impedance of several MMIC structures using
electric and magnetic anisotropic substrates were compared
with existing published data and show very good agreement.
Two specific geometries, conventional and suspended CPW’s,
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Fig. 11. Longitudinal fields for the dominant mode and first HOM of a suspended CPW at a frequency of 15 GHz (all dimensions are in millimeters).

were analyzed using four common anisotropic materials. It
was found that the suspended CPW exhibited much less
dispersion and mode interaction compared to the conventional
CPW configuration. The cutoff frequencies of the HOM’s are
also shifted to higher values with the potential for increasing
single mode operational bandwidth. In addition, a principal
axis rotation was shown to further improve the dominant mode
dispersion characteristics as well as dominant mode interaction
with HOM’s.

APPENDIX
Using the permittivity and permeability tensor definitions
given in Section II, the corresponding elemental matrices of
the finite element formulation when using linear triangular
elements are given below:

l2
[Tl =55 { [63 — baba + B3] + (cuy + ey

b
. <b363 — _2_03;;_&[)3 + bgCg)

+ eyylcd — cacs + C%]} (38)

lZ
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24 A

b b
. (bm _ ﬁs’_;_‘fu n 63,33>
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